题面
设\(a\)的递推公式为
\[a_i=\sum_ja_jb[count(i\oplus j)]\]
其中\(\oplus\)为异或,\(count(i)\)表示\(i\)的二进制中\(1\)的个数
给出\(a_0,b\),求\(a_t\),\(t\leq 10^{18}\)
题解
如果我们定义\(c_i=b[count(i)]\)
这显然就是个异或卷积了……因为要卷\(t\)次,所以点值表示乘起来的时候要把\(c_i\)快速幂一下
然而有个尴尬的问题就是这里的模数可能是偶数……那么我们\(IDFT\)的时候\(2\)显然没有逆元啊……
解决方法是把模数乘上\(lim\)(即\(fwt\)的数组长度),那么最后\(IDFT\)之后把所有数对\(lim\)下去整就行了
记得得用快速乘
//minamoto#include#define R register#define ll long long#define dd long double#define fp(i,a,b) for(R int i=(a),I=(b)+1;i I;--i)#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)using namespace std;char buf[1<<21],*p1=buf,*p2=buf;inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}int read(){ R int res,f=1;R char ch; while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1); for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0'); return res*f;}ll readll(){ R ll res,f=1;R char ch; while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1); for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0'); return res*f;}const int N=(1<<20)+5;ll P;inline ll add(R ll x,R ll y){return x+y>=P?x+y-P:x+y;}inline ll dec(R ll x,R ll y){return x-y<0?x-y+P:x-y;}inline ll mul(R ll x,R ll y){return x*y-(ll)((dd)x/P*y)*P;}inline ll ksm(R ll x,R ll y){ ll res=1; for(;y;y>>=1,x=mul(x,x))y&1?res=mul(res,x):0; return res;}void Fwt(ll *A,int lim,int ty){ ll t; for(R int mid=1;mid <<=1) for(R int j=0;j <<1)) fp(k,0,mid-1) A[j+k+mid]=dec(A[j+k],t=A[j+k+mid]), A[j+k]=add(A[j+k],t); if(!ty)fp(i,0,lim-1)A[i]/=lim;}int n,lim;ll t,a[N],c[N],sz[N],b[25];int main(){ n=read(),t=readll(),P=read(),lim=(1< >1]+(i&1)]; Fwt(a,lim,1),Fwt(c,lim,1); fp(i,0,lim-1)a[i]=mul(a[i],ksm(c[i],t)); Fwt(a,lim,0); fp(i,0,lim-1)printf("%I64d\n",a[i]); return 0;}